La luz de esta gran estructura similar a una red, con su agujero negro de mil millones de masas solares, ha viajado hasta nosotros desde una época en la que el universo tenía sólo 900 millones de años. “Nuestro trabajo ha colocado una pieza importante en el rompecabezas, en gran parte incompleto, de la formación y el rápido crecimiento tras el Big Bang de objetos tan extremos, aunque relativamente abundantes», afirma el coautor Roberto Gilli, también astrónomo del INAF de Bolonia, refiriéndose a los agujeros negros supermasivos.
Los primeros agujeros negros, que se cree que se formaron a partir del colapso de las primeras estrellas, deben haber crecido muy rápido para alcanzar masas de mil millones de soles dentro de los primeros 900 millones de años de vida del universo. Pero los astrónomos han tenido dificultades para explicar cómo podrían haber dispuesto de cantidades suficientemente grandes de «combustible de agujero negro» para permitir que crecieran a tamaños tan enormes en tan poco tiempo. La estructura recién encontrada ofrece una posible explicación: esta «tela de araña» y las galaxias que hay en su interior contienen suficiente gas como para proporcionar el combustible que el agujero negro central necesita para convertirse rápidamente en un gigante supermasivo.
Pero, ¿cómo se formaron antes estas estructuras tan grandes? Los astrónomos apoyan la idea de que la clave está en los halos gigantes de la misteriosa materia oscura. Se cree que, en el universo primitivo, estas grandes regiones de materia invisible atraen enormes cantidades de gas; juntos, el gas y la materia oscura invisible forman estas estructuras similares a redes donde las galaxias y los agujeros negros pueden evolucionar.
Para Colin Norman, de la Universidad Johns Hopkins en Baltimore (EE.UU.) y también coautor del estudio, “Nuestro hallazgo apoya la idea de que los agujeros negros más distantes y masivos se forman y crecen dentro de enormes halos de materia oscura en estructuras a gran escala, y que la ausencia de detecciones anteriores de tales estructuras probablemente se debió a limitaciones observacionales”.
Las galaxias detectadas son algunas de las más débiles que pueden observar los telescopios actuales. El descubrimiento requirió de observaciones de varias horas de duración utilizando los telescopios ópticos más grandes disponibles, incluyendo el VLT de ESO. El equipo confirmó el vínculo entre cuatro de las seis galaxias y el agujero negro utilizando los instrumentos MUSE y FORS2, instalados en el VLT, en el Observatorio Paranal de ESO, en el desierto chileno de Atacama. “Creemos que acabamos de ver la punta del iceberg y que las pocas galaxias descubiertas hasta ahora alrededor de este agujero negro supermasivo son sólo las más brillantes”, destaca la coautora Barbara Balmaverde, astrónoma del INAF en Turín (Italia).
Estos resultados contribuyen a nuestra comprensión de cómo se formaron y evolucionaron los agujeros negros supermasivos y las grandes estructuras cósmicas. Utilizando sus potentes instrumentos, el telescopio ELT (Extremely Large Telescope) de ESO, actualmente en construcción en Chile, podrá observar gran cantidad galaxias mucho más débiles alrededor de enormes agujeros negros en el universo primitivo, haciendo así que esta investigación crezca y amplíe nuestros conocimientos sobre estos objetos.
Información adicional
Este trabajo de investigación se ha presentado en el artículo científico “Web of the giant: Spectroscopic confirmation of a large-scale structure around the z = 6.31 quasar SDSS J1030+0524” y aparece publicado en la revista Astronomy & Astrophysics (doi: 10.1051/0004-6361/202039045).
El equipo está compuesto por M. Mignoli (INAF, Bolonia, Italia); R. Gilli (INAF, Bolonia, Italia); R. Decarli (INAF, Bolonia, Italia); E. Vanzella (INAF, Bolonia, Italia); B. Balmaverde (INAF, Pino Torinese, Italia); N. Cappelluti (Departamento de Física, Universidad de Miami, Florida, EE. UU.); L. Cassará (INAF, Milán, Italia); A. Comastri (INAF, Bolonia, Italia); F. Cusano (INAF, Bolonia, Italia); K. Iwasawa (ICCUB, Universidad de Barcelona e ICREA, Barcelona, España); S. Marchesi (INAF, Bolonia, Italia); I. Prandoni (INAF, Instituto de Radioastronomía, Bolonia, Italia); C. Vignali (Departamento de Física y Astronomía, Universidad de Estudios de Bolonia, Italia; e INAF, Bolonia, Italia); F. Vito (Escuela Normal Superior, Pisa, Italia); G. Zamorani (INAF, Bolonia, Italia); M. Chiaberge (Instituto de Ciencias del Telescopio Espacial, Maryland, EE. UU.); y C. Norman Maryland, (Instituto de Ciencias del Telescopio Espacial & Universidad Johns Hopkins, Maryland, EE. UU.).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza, junto con Chile, país anfitrión, y Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.