El radiotelescopio ASKAP de Australia ha detectado la más antigua y distante explosión de ondas de radio cósmicas registrada hasta ahora: FRB 20220610A. Desde Chile, con el Very Large Telescope se ha localizado su fuente en un grupo de galaxias cuya luz ha tardado 8.000 millones de años en llegar hasta nosotros. El descubrimiento confirma que estos misteriosos estallidos se pueden usar para ‘pesar’ el universo.
En un artículo publicado esta semana en Science, un equipo internacional dirigido por los profesores Stuart Ryder de la Universidad Macquarie y Ryan Shannon de la Universidad Tecnológica de Swinburne (ambas en Australia) informa del descubrimiento de la ráfaga rápida de radio (FRB, por sus siglas en inglés), la más distante y antigua localizada hasta la fecha, con unos 8.000 millones de años de antigüedad. Su nombre, FRB 20220610A.
El descubrimiento de esta ráfaga bate el récord anterior, según explica Ryder a SINC: «Hasta ahora, la más antigua y distante que habíamos localizado era FRB 20190711A, de 5.200 millones de años, aunque un grupo de Caltech (EE UU) afirmó haber encontrado otra con 6.100 millones de años. De todas formas, las FRB son un campo tan cambiante que es posible que otros equipos que buscan estas ráfagas y sus galaxias anfitrionas hubieran confirmado una más lejana y aún no lo hubieran anunciado; pero, de momento, seguimos teniendo el récord».
La fuente de este estallido de radio, que dura mucho menos de un segundo, parece estar en un grupo de dos o tres galaxias que se están fusionando, según las observaciones.
El 10 de junio de 2022, el radiotelescopio ASKAP, que la Organización de Investigación Científica e Industrial de la Commonwealth (CSIRO) tiene en Australia, se utilizó para detectar un estallido de radio rápido creado en un evento cósmico, que liberó, en cuestión de milisegundos, el equivalente a la emisión total de nuestro Sol durante 30 años. Es una de las FRB más energéticas jamás observadas.
En una fracción de segundo se liberó el equivalente a la emisión energética de nuestro Sol durante 30 años
El hallazgo de FRB 20220610A también confirma que este tipo de ráfagas se pueden utilizar para medir la materia ‘que falta’ entre las galaxias, proporcionando una nueva forma de ‘pesar’ el universo. Esto supone una ayuda en un momento en que los métodos actuales para estimar la masa del cosmos ofrecen respuestas contradictorias y desafían el modelo estándar de cosmología.
Las FRB como estas se pueden utilizar para medir la materia ‘que falta’ entre las galaxias, proporcionando una nueva forma de ‘pesar’ el universo
«Las ráfagas rápidas de radio detectan este material ionizado», continúa el experto. «Incluso en un espacio que está casi perfectamente vacío, pueden ‘ver’ todos los electrones, y eso nos permite medir cuánta materia hay entre las galaxias», sostiene.
Ryder lo detalla: “La señal FRB que detectamos lleva impreso un registro de cuántos electrones atravesó para llegar desde su punto de origen hasta la Tierra. Si lo comparamos con la distancia a la que se encuentra su galaxia anfitriona, deducida a partir de su espectro óptico (mediante el efecto Doppler), obtenemos la densidad de estos electrones, cada uno de los cuales fue despojado de un átomo. Si multiplicamos la densidad por el volumen del espacio que nos rodea, obtenemos una estimación de la masa total de átomos, muchos de los cuales no aparecen de ninguna otra forma”.
Por eso, detectar FRB distantes es clave para medir con precisión la materia ‘que falta’ del universo, tal y como ya señaló el fallecido astrónomo australiano Jean-Pierre (J-P) Macquart en 2020.
«J-P demostró que cuanto más lejos está una ráfaga rápida de radio, más gas difuso revela entre las galaxias. Esto ahora se conoce como relación de Macquart (‘dispersión’ de la FRB –la suma de electrones que sondea– frente a la distancia de la galaxia de la que procede). Algunas FRB recientes parecieron romper esta relación, pero nuestras mediciones confirman que se extiende más allá de la mitad del universo conocido», afirma Ryder.
«El descubrimiento de FRB 20220610A es significativo porque ayuda a ‘anclar’ el extremo superior de la relación de Macquart –subraya–. Aun así, se sitúa por encima de una simple extrapolación a partir de los FRB más cercanos, ya sea porque hay un exceso de electrones entre nosotros y el estallido (por ejemplo, si atraviesa los halos de galaxias en primer plano en esa misma dirección general), o tal vez debido al gas caliente de una nebulosa que rodea inmediatamente al magnetar [estrella de neutrones con un potentísimo campo magnético] que creemos que dio lugar al FRB. Tendremos que encontrar más objetos de este tipo para averiguar qué efecto domina».
Hasta ahora se han detectado unas 50 ráfagas rápidas de radio, pero se sigue sin conocer lo que causa estas explosiones masivas de energía
«Aunque todavía no sabemos qué las causa, el artículo confirma que las ráfagas rápidas de radio son eventos comunes en el universo y que podremos utilizarlas para detectar materia entre galaxias y comprender mejor la estructura del universo», recalca Shannon.
El equipo también demostró que 8.000 millones de años, como los de FRB 20220610A, es el tiempo máximo que podemos esperar para ver y localizar estallidos de radio rápidos con los telescopios actuales. Pero también sugiere que deberíamos ser capaces de detectar miles de estas ráfagas en todo el cielo, y a distancias aún mayores, con la ayuda de las nuevas herramientas que ya están en camino.
La comunidad astronómica pronto dispondrá de ellas para detectar ráfagas aún más antiguas y distantes, precisar sus galaxias originarias y medir la materia que falta en el universo.
Actualmente, con el proyecto internacional Square Kilometre Array (SKA) se están construyendo dos radiotelescopios en Sudáfrica y Australia que serán capaces de detectar miles de FRB, incluidas algunas muy distantes que no pueden detectarse con las instalaciones actuales.
Por su parte, el futuro Extremely Large Telescope (ELT) de ESO, un telescopio de 39 metros que se está construyendo en el desierto chileno de Atacama, será uno de los pocos capaces de estudiar las galaxias donde se originan estos estallidos de radio, incluso los que se encuentran más lejos que FRB 20220610A.
Referencia:
S. D. Ryder et al. “A luminous fast radio burst that probes the Universe at redshift 1”. Science (2023)
Esta entrada fue modificada por última vez en 03/04/2024 14:08
Ciencia, naturaleza, aventura. Acompáñanos en el mundo curioso.