Trinite: the strange gem created by the first nuclear explosion in history

trinitita

Trinite: the strange gem created by the first nuclear explosion in history

file 20230713 17 1ih3hc.jpeg?ixlib=rb 1.1
Fragmentos de trinitita, la ‘gema nuclear’. C. Menor-Salván / UAH, Author provided
César Menor-Salván, University of Alcalá

A pesar de lo que sugiere su nombre, la trinitita no es un mineral. Ni es natural. Es un material que se formó durante un hecho histórico decisivo: la primera explosión nuclear de la historia, el 16 de julio de 1945, en Alamogordo (Nuevo México, EE. UU.). Este material único nos sigue contando qué ocurrió en aquel momento tristemente histórico.

Se acercaba el final de la Segunda Guerra Mundial. El Proyecto Manhattan llevaba desarrollándose desde 1941, cuando el presidente Roosevelt, motivado por la posibilidad de que Alemania consiguiera desarrollar un nuevo tipo de arma de destrucción masiva, autorizó la puesta en marcha de uno de los desafíos técnicos y científicos mas ambiciosos de la historia. El proyecto implicó a físicos, químicos, ingenieros, matemáticos y miles de trabajadores en un esfuerzo contrarreloj.

Los logros técnicos del proyecto Manhattan dieron un impulso al desarrollo industrial y tecnológico de los EE. UU. También plantó la semilla de la Guerra Fría, debido a su dramático fruto, surgido en julio de 1945 de las instalaciones de Los Álamos, en Nuevo México: el Gadget

file 20230703 212535 7u2rr3.jpg?ixlib=rb 1.1
El Gadget, preparado para el test Trinity. Los Alamos National Laboratory / Wikimedia Commons

El primer prototipo funcional de una bomba nuclear

He Gadget fue el primer prototipo funcional de una bomba nuclear. El día 15 de julio de 1945 estaba montado y listo para explotar durante el test Trinity, destinado a comprobar experimentalmente las predicciones teóricas.

He Gadget era un dispositivo de implosión: un explosivo convencional comprime el núcleo de plutonio-239 de la bomba, que alcanza su masa crítica y provoca una reacción de fisión en cadena que libera una cantidad de energía jamás vista hasta entonces.

file 20230703 290827 wl5wo8.jpg?ixlib=rb 1.1
A la una de la tarde del día 12 de Julio de 1945, el sargento Herbert Lehr lleva el núcleo de plutonio de la bomba a la sala de montaje. Atomic Heritage Foundation

El plutonio-239 es un isótopo fácilmente fisible fabricado por irradiación de uranio con neutrones. El plutonio no se encuentra en la naturaleza más que en forma de trazas, en algunos yacimientos de uranio donde se formaron “reactores nucleares naturales”.

Uno de los retos del proyecto era obtener suficiente plutonio puro a partir de uranio. Para ello utilizaron el Reactor B de la planta secreta de producción de plutonio de Hanford (Washington). Ahora museo, entonces fue el primer reactor nuclear comercial destinado a la producción de plutonio, operado por la empresa DuPont, que renunció a los beneficios y se desmarcó de este área para no ser asociada con el desarrollo de la bomba.

file 20230703 242397 qjqwab.jpg?ixlib=rb 1.1
Torre de 30 metros y caseta donde se colocó la bomba para la detonación. Todo se volatilizó, pero las evidencias de esta estructura podían verse en la trinitita. Cortesía de National Nuclear Security Administration / Nevada Site Office

A las 5:29 de la mañana del 16 de julio de 1945, se detonó el Gadget en el remoto desierto de la Jornada del Muerto. Fue la primera explosión nuclear de la historia, con un rendimiento aproximado de 19 kilotones. Fue más potente de lo calculado, destruyendo algunos instrumentos científicos ubicados a supuesta distancia segura.

“Ahora somos unos auténticos hijos de puta”

Tras la explosión, Kenneth Bainbridge, director científico del test Trinity, exclamó: “Ahora somos unos auténticos hijos de puta”.

Robert Oppenheimer remarcó que esa fue la frase más apropiada que se dijo tras la explosión.

En efecto, las dos siguientes bombas, llamadas Little Boy and Fat Man (versión militar del Gadget), mataron a unas 214 000 personas en las ciudades japonesas de Hiroshima y Nagasaki. De ellas, aproximadamente la mitad murieron por las explosiones y el resto debido a la contaminación radiactiva.

TrinityFireballGif
Grabación de la explosión del Gadget.

La trinitita, testigo silencioso de la explosión

El plutonio-239 sostiene una reacción, llamada fisión, en la que un neutrón parte un núcleo atómico en fragmentos, liberando una media de 2,88 neutrones, que rompen otros núcleos de plutonio y así sucesivamente. Esta reacción puede amplificarse en cadena cuando se supera la masa crítica con plutonio muy puro. En este caso tiene lugar la liberación explosiva de la energía producida por la ruptura de los núcleos.

La fisión de los núcleos genera otros elementos químicos. Estos elementos no son iguales que sus versiones comunes (es decir, isótopos), sino que son muy radiactivos.

Los neutrones provocan, además, la transformación de los materiales con los que se encuentran en elementos radiactivos. El resultado es, además de la brutal explosión, una contaminación radiactiva que puede alcanzar cientos de kilómetros de distancia, debido a que algunos elementos son volátiles o gases, como el yodo-131 o el kriptón-85.

file 20230703 242397 gjldng.jpg?ixlib=rb 1.1
Fragmento de trinitita. C. Menor-Salván / UAH

El calor fundió la arena del desierto

La temperatura de la detonación del Gadget superó a la de la superficie del Sol. El calor fundió la arena del desierto. Llovieron gotas de vidrio incandescente en un radio de cientos de metros.

Cuando todo había terminado, los investigadores vieron que el suelo estaba cubierto por vidrios de colores, normalmente verdes, en ocasiones formando hermosas gemas transparentes. Recogieron muestras que se guardaron como recuerdo del hecho histórico. Incluso algunas se usaron para fabricar joyas exclusivas. Pronto se dieron cuenta de que era mala idea, pues la trinitita contenía elementos producidos por la explosión y era intensamente radiactiva, hasta el punto de provocar quemaduras en la piel.

file 20230703 283568 yyygjs.jpg?ixlib=rb 1.1
Análisis de los elementos radiactivos de la trinitita, realizado en nuestro laboratorio, mediante espectrometría gamma. C. Menor-Salván / UAH

Hoy día, la trinitita ha perdido la mayor parte de su radiactividad y puede manejarse sin riesgo. Pero aún contiene testigos de la explosión nuclear:

  • Cesio-137: es uno de los principales productos de fisión del plutonio. Con un periodo de semidesintegración de 30 años, es el mayor elemento radiactivo de la trinitita. El cesio-137 es uno de los principales causantes de la contaminación radiactiva en una explosión nuclear.

  • Americio-241: indica que la bomba estaba formada por plutonio-239. Permanecerá en la trinitita durante un milenio.

  • Bario-133: es difícil de detectar, pues su actividad se reduce a la mitad en algo más de 10 años. Se piensa que su origen está en el explosivo que se usó para detonar la bomba, llamado Baratol, formado por nitrato de bario.

  • Europio-152: un elemento radiactivo característico de la trinitita, utilizado en la confirmación de ésta frente a falsificaciones.

Los elementos radiactivos desaparecerán con el tiempo, pero las características peculiares de este material, la presencia de estructuras extrañas como los cuasicristales, y las huellas isotópicas que delatan su origen, seguirán ahí tras la desaparición de la civilización. Un testigo de nuestro paso por el planeta y del genio, soberbia y maldad humanas.The Conversation

César Menor-Salván, Profesor Contratado Doctor. Bioquímica y Astrobiología. Departamento de Biología de Sistemas, University of Alcalá

This article was originally published in The Conversation. read the original.