¿Por qué hay ranas negras en Chernóbil?

Las ranas negras de Chernóbil nos muestran la evolución en tiempo real

Extremos del gradiente de coloración de ranita de San Antonio oriental (Hyla orientalis). A la izquierda, ejemplar capturado en Chernóbil dentro de zona de alta contaminación; a la derecha ejemplar capturado fuera de la Zona de Exclusión. Germán Orizaola/Pablo Burraco, CC BY
Germán Orizaola, Universidad de Oviedo y Pablo Burraco, Estación Biológica de Doñana (EBD-CSIC)

En 1986 un accidente en el reactor 4 de la central nuclear de Chernóbil (Ucrania) produjo la mayor liberación de material radiactivo al ambiente de la historia. El impacto de la exposición aguda a altas dosis de radiación fue severo para el medio ambiente y para las poblaciones humanas. No obstante, más de tres décadas después del accidente, Chernóbil se ha transformado en una de las mayores reservas naturales de Europa. Allí encuentra hoy refugio una gran diversidad de especies amenazadas.

Vista del reactor 4 de la central nuclear de Chernóbil desde el lago Azbuchyn (Ucrania), 2019. Germán Orizaola

La radiación puede afectar al material genético de los organismos vivos al causar daños irreversibles y generar mutaciones indeseables. Una de las cuestiones más interesantes que se estudian ahora en Chernóbil es la existencia de respuestas adaptativas frente a la radiación ionizante. Como ocurre con otros contaminantes, esta radiación podría seleccionar organismos con mecanismos que les permitieran sobrevivir mejor en zonas contaminadas con sustancias radiactivas.

Área contaminada dentro de la Zona de Exclusión de Chernóbil (Ucrania). ArcticCynda

La melanina como protección frente a la radiación

Nuestros trabajos en Chernóbil comenzaron en el año 2016. Ese año detectamos cerca del reactor nuclear accidentado varias ranitas de San Antonio orientales (Hyla orientalis) con una coloración inusual, negra. Esta especie presenta normalmente una coloración verde brillante, aunque ocasionalmente se puede encontrar algún individuo más oscuro.

La melanina es responsable de la coloración oscura en muchos organismos. Este compuesto puede reducir los efectos negativos de la radiación ultravioleta. También se ha demostrado su papel protector frente a la radiación ionizante en hongos. La melanina absorbe y disipa parte de la energía de las ondas radiactivas. Además, puede captar y reducir el número de radicales libres que generan. Estas acciones reducen la probabilidad de sufrir daños celulares que disminuyan la supervivencia de los individuos.

Macho de ranita de San Antonio oriental (Hyla orientalis) en una localidad fuera de la Zona de Exclusión de Chernóbil (Ucrania), 2019. Germán Orizaola

El estudio de la coloración de las ranas de Chernóbil

Tras detectar en 2016 las primeras ranas negras, nos planteamos estudiar qué papel podría estar desempeñando la melanina en Chernóbil. Para ello, entre 2017 y 2019 examinamos la coloración de las ranitas de San Antonio en diversas zonas del norte de Ucrania.

Durante esos tres años analizamos la coloración del dorso de unos 200 machos capturados en doce localidades. Estas localidades se distribuyen a lo largo de un amplio gradiente de radiación. Incluyen desde algunas de las zonas más radiactivas del planeta, hasta cuatro localidades fuera de la Zona de Exclusión y con niveles basales de radiación.

Nuestro trabajo demuestra que las ranas de Chernóbil tienen una coloración mucho más oscura que las ranas capturadas en zonas control fuera de la Zona de Exclusión. Como habíamos detectado en 2016, algunas son completamente negras. Esta coloración no está relacionada con los niveles de radiación que experimentan las ranas en la actualidad y que medimos en todos los individuos. La coloración oscura es típica de ranas de localidades que están dentro o cerca de las zonas más contaminadas en el momento del accidente.

Gradiente de coloración de la ranita de San Antonio oriental (Hyla orientalis) en el norte de Ucrania. Germán Orizaola/Pablo Burraco, CC BY-SA

Respuestas evolutivas en Chernóbil

Los resultados del estudio sugieren que en Chernóbil podría haberse dado un proceso de evolución rápida frente a la radiación. En este escenario, aquellas ranas con coloración más oscura en el momento del accidente, que representan normalmente una minoría en sus poblaciones, se habrían beneficiado de la acción protectora de la melanina.

Las ranas oscuras habrían sobrevivido mejor a la radiación y se habrían reproducido con más éxito. Más de diez generaciones de ranas han pasado desde el accidente y un proceso clásico de selección natural puede explicar por qué estas ranas oscuras son ahora mayoría en la Zona de Exclusión de Chernóbil.

El estudio de las ranas negras de Chernóbil constituye un primer paso para entender mejor el papel protector de la melanina en ambientes afectados por contaminación radiactiva. Además, abre las puertas a posibles aplicaciones en campos tan diversos como la gestión de residuos nucleares y la exploración espacial.

Lago Glyboke, Zona de Exclusión de Chernóbil (Ucrania), 2019. Germán Orizaola

Esperamos que la situación de guerra que sufre Ucrania termine y la comunidad científica pueda volver pronto a investigar los fascinantes procesos evolutivos y de renaturalización de los ecosistemas de Chernóbil.The Conversation

Germán Orizaola, Investigador Ramón y Cajal, Universidad de Oviedo y Pablo Burraco, Investigador postdoctoral Juan de la Cierva Incorporación, Estación Biológica de Doñana (EBD-CSIC)

Este artículo fue publicado originalmente en The Conversation. Lea el original.

Comenta